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MOMENT THEORY OF ELECTROMAGNETIC EFFECTS IN ANISOTROPIC SOLIDS* 

I.G. TEREGULOV 

A moment (polar) theory of deformable solids is constructed for 
anisotropic media such as polarisable piezoelectric ceramics. The 
linear theory is considered in detail and an explanation of the 
non-linear change in the electric field inside a polarized piesoelectric 
material (the Mead effect) is given. The classical theory of 
electromagnetic effects in solids does not enable certain observed 
effects to be described (for example, the Mead effect /I/). Attempts to 
eliminate this drawback of classical theory /2, 3/ rest on the 
introduction of the polarization gradient into the enthalpy as a 
parameter of the process. Models of complex media which takes into 
account the internal mechanical and electromagnetic moments have been 
constructed in electrodynamics (for example /4, 5/) when electromagnetic 
fields interact with the medium. Below, a solution of the problem is 
given and an example of a natural description of the Mead effect is 
presented. 

Suppose xi(i = 1, 2, 3) is a Lagrange system of coordinates frozen into a medium which 
occupies a volume V with a boundary S. The vector r(zi, t), defines the position of a point 
of this medium with respect to a fixed inertial system y", where t is the time. The vector 
r* = r + "(li, t) defines the position of material points of the medium after strain, where u 
is the displacement vector. Further constructions which are carried out have the purpose of 
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describing the behaviour of piezoelectric ceramic media which are brittle, and naturally, can- 
not be subjected to appreciable strain or bending. For this reason the further constructions 
are carried out in a geometrically linear formulation. For small displacements, Green's 
strain tensor has covariant components 

E = aiXrfrLa 2~ = V+r -+- V+i = r+*&xJ3xk + rk*i3u,/rlx’ 

while the Cauchy stress tensor has contravariant components eik. The stress vector on an 
area with unit vector n = nfri is 

P, = o’“r,ni; 22 = a”%g, +.zu*% c k6 (11 

while the vector of the internal moment on the same area is 

p, = p Ik nirr; M = pL'krirk+:pikrkri (2) 

where pi" are the components of the moment tensor. It follows from the equations of eguilib- 
rium for the forces and moments for an elementary volume that 

Vi@ + Q" = 0, V&j + cik'oa + p'=O 
(3) 

where QQi, piri are vectors referred to unit volume of the mass forces and moments. It 
follows from (3) that in general uik + ski. 

We will use the condition that for an arbitrary volume of the body the sum of the second- 
order moments Ir x lr x Fll with respect to an internal point is in equilibrium. We then 
obtain the equality pik = pki, which will henceforth be assumed to be satisfied. 

The sum of the work done by the external forces and moments 

where w is the rotation vector, and, taking expressions (1) and (2) into account, this can 
be converted to the form 

In this notation, Eqs.(3) take the form 

Above and everywhere henceforth integration is carried out over the volume y and the 
surface S. 

The increment of energy of the electromagnetic field in the volume V and the amount of 
heat dissipated due to the fluxes qh and ge of the magnetic field H and the electric field 
E can be expressed as follows (B and II are the magnetic and electric induction and I is the 
current strength): 

6W =Srl,'g&idS$-SqtGHidS=Gf(E.D'+H-B')dli+6SE.ldB (6) 

where the right-hand side is taken as the energy by definition /6/. 
By adding to the middle and right-hand sides the terms 

we obtain 

- 1 nje’kjHi8EkdS + 1 njcjikEiBHkdS 

S &h’ - njcjikni) &~,a + 1 (q,k + njcjikq m,ds = 

S 
pk +P-ejikvj~i) ap +S@ + cji%7j"cij 6ffBdv 1’) 



When Maxwell's equations are satisfied the right-hand side of the last equation is zero 
and, consequently, for arbitrary variations 6~~ and 6Hk, the boundary conditions for the 
fluxes qh and Q follow from (7). Hence, relations (61 and (7) are analogues of Lagrange's 
variational equation, written for an electromagnetic field. 

Including in our considerations the inflow of heat due to the flux vector of its q through 
the surface S and due to internal sources of intensity r, we obtain the following equation 
for the increment of the internal energy of the medium: 

dU=6A+6W+(SrdV)dt-((Sq.ndS)dt (8) 

The total amount of heat absorbed by the body in a time dt is 

where w' is the rate of generation of heat due to conversion of mechanical energy and the 
energy of the interaction of the electromagnetic and mechanical fields into heat. Using 
Gauss's theorem for the rate s' of increase of entropy per unit volume, we obtain (T is the 
absolute temperature) 

Ts’ = -Vviqi + r + CT, u = E.I+ W (9) 

In view of the fact that qiriT< 0 and cr>O for irreversible processes, the Clausius- 
Duhem inequality 

s' + Vi (q-/T) - TIT > 0 

follows from (9). 
Introducing the free energy F = u - Ts we obtain from (8) 

F” = ttkELk’ + pLikEik’ + v”y,’ + E’D,’ + BiBi’ _ sT’ _ W’ 

W’ = x WxAXa’ 

where XA are additional parameters of the process with a generalized tensor index A, and 

WXA are generalized forces corresponding. to them. 
Further constructions depend on the choice of the parameters XA and the functions W./. 

If, for example eij(n)t Eij(n)t Yi(n) are the irreversible components of the strains, in which 

tik, pik> vi perform work which is dissipated in the form of heat with powers 

then, using the notation 

we obtain from the expression for F 

t” = aF,k?e.. II(C), pii = aF/a&jc,,, vj = 8F/ayjc,, 

E” = ijFlaD,, II’ = BFtaB,, s = -aFIaT 

(11) 

It is obvious that E&e,, E&e,. Yice) is the rate of increase of elastic (locally irrevers- 
ible) strains, while the first three groups of Eqs.(ll) represent generalizations of Green's 
formulas, which are well-known in the theory of elasticity, to the case of inelastic strains. 
Similar generalizations are possible for the groups of formulas (11) for Ek and H,, if 
irreversible parts of the increments of the quantities Di and Bi can exist. For X.4' we must 
introduce evolution equations /?/. Replacing s' in (9) by its expression 

s' = -d (i3FiaT)idt 

which follows from (ll), we obtain an equation for the heat flux. 
We will further assume that I = 0, which occurs in dielectrics, and we will assume that 

the deformation process is reversible over the range of variation of the parameters of the 
process considered. 

For crystals of the class (6mm) /8/ with one axis of mechanical and electrical symmetry, 
for which we take the z3 axis of a Cartesian system of coordinates .z,x~z~, the number of 
fundamental parameters of the process will include the scalars ea3, g,,, D,. B3, v3, T, the vectors 
%a, &ZZ, Da, &, Yu, and the tensors E,I;, Earl (a, p = 1,2). 

We will introduce the following limits. Suppose the process is isothermal and the effect 
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of the magnetic field is small. This is the case in dielectrics. Moreover, we will assume 

that ys N 0, ya -0 (similar to Kirchhoff's hypotheses in the theory of thin plates). In 
this case, the quantities vi are found from conditions (5) after solving Eq.(4), which 
reduces to three equations with three required functions Ui (xk,t). In addition we will assume 

that w' = 0. With these limitations, the arguments of the function P will be 

es3, Ess, D,; .sa@3, E.&S, DaDa; &., e,pfl, %&‘%6 (12) 

s:. I EapP, kxz%s 

and the mixed (combined) invariants will be 

GP, E,,D", @+Y ~a@@, %o.EaE~@g, SscrPeg3,. . . (13) 

which represent the mutual orientation of the tensors and vectors occurring in them. Of the 
mixed invariants (13) in the number of arguments of the function F we can only include those 
of them that satisfy the condition that all the set of arguments of the number (12) and (13) 
are independent. For example, the set of components &ikt Eik? Di contains 15 parameters. 
Hence, to the twelve basic arguments (12) we can additionally add not more than three 

invariants from (13), whereas the remaining ones will be numerically dependent on the 
previously chosen independent fifteen. 

The defining relations (11) and the system of arguments (12) and (13) introduced, which 
can be generalized in a natural way to crystals with lower symmetry, enable us to construct 
fairly general forms of relations between the fields, taking into account the physical non- 
linearity and the effect of the temperature. 

In order to demonstrate the possibility of describing the Mead effect within the framework 
of the relations constructed, we will introduce a number of simplifying assumptions. Suppose 
the fields E,~ and Eir are weakly coupled. Of the invariants (13) we need then only retain 
the first two. Taking this into account and retaining only the second powers in the expansion 
for F in powers of the main parameters, and taking into account the unstressed nature of the 
initial state, we obtain the defining relations (11) in the form 

t11 = cn%l + cn.% + CX+QG - es@,, t,, = ~12~11 + cll~2 + claesa - 
- e,@,, t3, = C13Ell + ClS%Z + C.w~ss - es3 D 

(14) 
3 

t 13 = 2c4&13 - e,,D,, t,, = 2cpp+ - e,,D, 

(the relations for uir are obtained from the relations for P*tiK by replacing elk, Cikr eik by 

‘tikr ‘A,, fik respectively). 
The relations for tit and Et, ignoring terms with Eik, repeat those usually employed 

(/8-U/ etc.). 
For the kinematic characteristics we have (the unwritten relations are obtained by cyclic 

permutation of the indices 1, 2, 3) 

We will consider a piezoelectric ceramic element of thickness 2h along the x1 axis, when 
the element is polarized in the direction of the xI axis. An external electrostatic field 
with vector E = E,e, acts on the specimen. Then, over the whole crystal t,, = t,, = t,, = 0, 
D, = D, = 0 and, consequently, &II = e22 =za3 = 0. Since only the additional moments 

nz = oE1 operate due to the action of the field E, on the dipoles oriented along the zQ 
axis, we have e,, = 0, ez3 = 0, 2e,, = du,l8r, when u1 = 0, ug = Ug (x1). In addition, g,, = k,, = 
E,, = 0, 2g,, + -c%,~~x,~. Together with this we have 

t,, = c,,dwldi - e,,D,, ~13 = --DA, ~2s = 0 

IL 12 = -4, (d,, - d,,)d=wldx2 (w = uQ, x = x1) 

Eq.(4) for k = 3 can be written in the following form: 

2d2wldx2 - (d,, - d,,)d4wldx4 + adE,ldx = 0 (15) 

Moreover, by (14) we have 

2E, = -e,,dw!dx + 2h,D, (16) 

In the polarized crystal considered, due to the action of the external electric field En 



790 

there will be uncompensated charges at the boundaries t =&h, whereas inside the charge 
density will be zero. Hence, in view of Maxwell's equation for the divergence of the induction 
it follows that Did = const inside the dielectric when -h<x<h. Eliminating the electric 
field Eld in the dielectric from Eqs.(lS) and (16) we obtain a uniform equation, the solution 
of which is 

w(x)= Ash ox+ B ch ox + Cx +D 

03 = (d,, - d,,W,, - %5) 

In view of the conditions of the problem, the function W(X) is skew symmetric with 
respect to x and, consequently, B = D = 0. At the boundaries x = kh we have 
and elimination of the rigid rotation by the condition 

t,, = 0, 
dwldx = 0 when x =0 gives 

C = -WA, A = e,,El/[cl,o (ch oh - I)] (17) 

Since, on passing through the boundary of the dielectric, the induction D, should retain 
its value, while in a vacuum D,, = El,, and whereas in a dielectric, together with (161, we 
must have Did = El* + 4nP, where P is the polarization, which in the case considered, accord- 
ing to (161, is represented by the term with dwldx, we have h, = 1. Hence, in the dielectric 
the electric field is given by the equation 

E,d = E, - e,,Ao (ch ox - I)/2 

where A is given by the second equation of (17). Hence, the electric field inside the dielec- 
tric is non-linearly variable, which leads to the Mead effect. When E, = 0, E, = 0, E, #. 0 
this efect should not be observed in the type of crystals considered. 

When constructing a non-linear theory, in general we must include the invariants (12) and 
(13) in the number of arguments of the function P. By taking into account the non-linearity 
connected with the dissipation of energy, we ensure an appropriate form of the function or 
the functional W,in which it is also possible to take into account the dissipation of the 
energy of the electromagnetic field itself and its interaction with the medium using models 
such as Maxwell's, Voigt's Boltzmann-Volterra etc. 

To describe the Mead effect in crystals which are unpolarized from the beginning, but are 
polarized due to an external electric field, we must introduce the tensor ViDj as the 
argument of the function F in (11) and consider the system of defining relations (14) by 
extending the system of invariants (12) and (13). 
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